Generation X Study

Thermal

Eric Grob

July 27, 2000

Requirements

◆ Collectors

- Aperture consists of many 0.3 mil thick glass segments with 8 mil radial separation and 1m axial length in various configurations:
 - deployed "petals"
 - 6m OD with 1m ID bus
 - Two 4m OD
- maintain at ambient temperature, with ~1°C gradient across/through mirror segments
- ~5000kg mass estimate!!

◆ FPA

- end of ~100m Astro Mast
- Cry-cooler requires 75°K (or better) sink to achieve < 1°mK detector
- possible housekeeping (power, RF data link to SC, propulsion)
- 50kg mass estimate

SC bus

Assess spinner versus fixed

Thermal Environment (Attitudes)

♦ Roll

• Fixed: $R = 0^{\circ}$

• optional: 0° < R < 360° at 1rpm

◆ Pitch

• 0° < R < 360°

during target acquisition

♦ Yaw

• -15° < Y < +15°

Collector/Bus Configurations

♦ Option 1, 2, & 3

- Requires ~1rpm roll or complex heat transport system
- Spinner:
 - De-spun bus/core
 - Momentum unloading for target acquisition pitch maneuvers

♦ Option 4

- SA serves as sun shield
- No spinner
- No heat transport system to spread sun-side heat

Most Promising Concept

Option #4

- Direct insertion to L2
- Delta IV launch vehicle
 - mass critical!!
- 3 Modules
 - · 2 collectors 4M dia. each
 - 1 bus 4M dia.
- Modules will rotate and drop into place
- Solar array
 - deployed from side of bus
 - along surface of collectors
- Mast deploys to 100 M

Draw-backs:

- · Mass Critical
- If shuttle is used no provisions have been made for apogee kick motor for L2 insertion

Collector(s)

- ♦ Determine area averaged emissivity for telescope aperture:
 - ε = 0.70 (mirror edge) and ε = 0.03 (gold)
 - Edge fraction <5% of aperture area
 - $\varepsilon_{\text{effective}} = 0.044$
- ♦ Maintain at ambient temperature (20°C)
 - Large amount of heater power without baffle:
 - 1000W (6 m aperture)
 - 900W (two 4m apertures)
- ◆ Baffles must maintain 3' collimation angle to bottom of mirror segment
 - Height is a function of radial separation
 - Anisotropic material (GrEP, Kevlar, etc): K_{circ} >> K_{axial}
 - Concepts:
 - Concentric rings
 - Honeycomb
 - Variable coatings

Collector Baffle

4m diameter

◆ Baffles must maintain 3' collimation angle to mirror segment

 Height is a function of radial separation of baffle "vanes"

 Anisotropic material (GrEP, Kevlar, etc) : K_{circ} >> K_{axial}

• Concepts:

Concentric rings

Honeycomb

Baffle:
8 mil thick GrEp
unidirectional lay-up
17.5" tall
9000 mil separation

Mirror segments:
0.3 mil thick

0.5m long7 mil separation

Maintain collimation: 3' = 0.05°

Baffle (top

& Bottom)

H =

FPA Thermal Control

- ♦ Size passive radiator for FPA cryo-cooler to 35°K to 75°K.
- ♦ Minimize cabling along mast:
 - Local solar array
 - RF link to SC
 - Local propulsion

Housekeeping Bus

- ◆ Circular cylinder shown; likely would be faceted; i.e. octagon, etc.
- ♦ Radiator area (usable):
 - ~15m² top & bottom
 - ~2m² side
- **♦** Component mounting:
 - top and bottom panels of bus compartment
 - sides panels
- ♦ Thermal control
 - not power limited
 - heat pipe spreaders, if needed
 - heaters, TT, TS, MLI, coatings

Thermal Hardware Costs

						Power(W)
No. Component NameMaturity		Quantity	Cost (\$K)	Mass (kg)	(Orbit Avg)	
	1 Heat Pipes (NH3)		8	80	8	
	2 Heat Pipe Radiator Panel (1 sqm)		3	360	15	
	3 Thermofoil Heaters NASA S311-P-079		50	4	1	1000
4 Multi Layer Thermal Insulation		1 set	100	10		
5 paint/coatings		1 set	50	2		
	6 Proportional Temperature Controller		10	20	2	15
	7 Thermistors	NASA S311-P-041	80	8	0	
	8 Thermostats	NASA S311-P-041	80	32	1	
9 Sunshield for FPA		1	50	3		

The END !!!!

[except for Back-Up Slides]

Configurations Considered

◆ Spinners vs fixed

- fixed may require spreading of radial heat load from sunside of PM, unless a sunshield can be deployed (a la NGST)
- spinner would cancel this effect by integrating sun over entire PM

PM Thermal Control

- ◆ Thermal shield/baffle/collimator needed for PM to reduce heater power for ambient temperature control (applies to all configurations).
 - Conductive control approach will induce gradients >> 1°C
 - Radiative control best option to (try to) meet 1°C gradient.

Thermal baffle

Height varies with radial separation to maintain 3' collimation angle:

use 1.00" separation ==> < 20" height 100mil thick GrEp (uni-directional)

Gen X Configuration

